
MRC/ABQ-R-741

Copy aJ

Mission Research Corporation

(N
0 IFR TRANSPORT IN RECIRCULATING ACCELERATORS

Final Report

Ncopy

B. B. Godfrey

B. S. Newberger OTICL. A. Wright S ELECTE
M. M. Campbell ET0

NO 01990D
November 198.5

Prepared for: SANDIA NATIONAL LABORATORIES
Pulse Power Directorate
Post Office Box 5800
Albuquerque, NM 87185

Undcr: Sandia Contract 51-4447

Prepared by: MISSION RESEARCH CORPORATION
1720 Randolph Road, SE.
Albuquerque, NM 87106-4245

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

S0 ]7 19 18



CONTENTS

Section Page

I INTRODUCTION 5

1. BACKGROUND 5

2. TECHNICAL ISSUES 5

II CHANNEL FORMATION 7

1. IONIZATION CROSS SECTIONS 7

2. MEAN FREE PATH 10

3. PULSE LENGTH 10

4. RECOMBINATION 11

5. THERMAL EFFECTS 12

6. EXPERIMENTAL PARAMETERS 13

7. APPLICATION PARAMETERS 13

8. CONCLUSION 14

III ACCELERATOR IFR BEAM TRANSPORT THEORY 15

1. EQUILIBRIUM CONDITIONS 15

2. CHANNEL TRACKING 17

3. BEAM FRONT EROSION 19

4. BEAM EMITTANCE GROWTH 21

5. COLLECTIVE INSTABILITIES 24

6. INJECTION AND EXTRACTION 25

7. SUMMARY AND RECOMMENDATIONS 26

IV MIMI SIMULATIONS 27

V SELF EXPANSION OF AN ION CHANNEL 31

1



CONTENTS (Concluded)

Section Page

VI BEAM TRANSPORT IN CURVED SECTIONS: A COMPUTATIONAL 34
APPROACH

1. THEORY 34

2. COMPUTATIONAL SCHEME 42

3. CODE DEVELOPMENT 43

4. SUMMARY 44

REFERENCES 46

APPENDIX A 49

20



ILLUSTRATIONS

Figure Page

1 Total cross-section for ionization of helium, argon, 9
and neon by electron impact

2 Beam and plasma electron particle plots, 4 MeV, 10 kA 28
beam in an f = 1 IFR channel

3 Net current versus time, 10 kA, 4 MeV beam in f =1 IFR 30
channel

4 Coordinate systems for describing beam transport in 35

curved drift pipes

5 IFR beam transport energy partition diagram 51

A-iccess i (,n For

NTIS CFA&I mo
DTLC :-.i'

Av~i auJd/or

3/4



I. INTRODUCT ION

1. BACKGROUND

Charged particle beam weapon researchdperformed by Mission Research

Corporation (MRC) for Sandia National Laboatories (SNL) during FY8 has

focused on predictions of RADLAC beam propagation in the atmosphere,

analysis of RADLAC beam transport in low density ionized (IFR) channels,

and preliminary studies of generic IFR transport in recirculating high

current electron beam inductive accelerators. This report summarizes our

recirculating accelerator findings. In addition, a patent di*sclosure for

creating IFR channels with low power electron beams has been prepared in

collaboration with SNL personnel. RADLAC results will be presented in a

separate, classified report.

Also under the present contract, MRC contributed to a review of

Department of Energy in-house nuclear-directed energy programs.

TECHNICAL ISSUES

The production of the IFR channel is fundamental to the guiding of a

relativistic electron beam by an ion channel. Photoionization of organic

molecules by a UV laser, the most common method of producing these

channels, has its drawbacks. The compounds can be difficult to handle.

Fragmentation of the molecules complicates the "gas" chemistry. Perhaps

most important from the perspective of the basic physics of IFR transport,

the range of masses of suitable molecules is limited. To circumvent these

difficulties, the possibility of creating an IFT channel using a low

energy electron beam is considered in Section II.

In order to fully exploit laboratory scaJe experiments on IFT transport

of intense relativistic electron beams and assess application scale

systems, analytic scaling laws for the pertinent physics issues must he

developed. Our efforts to do this for certain issues related to beam
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equilibrium and stability are described in Section III. Results of

numerical simulations to test some of these are presented in Section IV.

Section V describes some analytic results related to the dynamics of the

ion channel in the absence of a beam. This is a topic of particular

importance in recirculating devices.

The transport of beams in curved IFR channels, also essential in

recirculating accelerators, presents certain difficulties for numerical

solutions by PIC simulation. These systems are fully three-dimensional,

and codes for treating three-dimensional problems are enormously expensive

to run (if they are available at all). Often, they can only treat the

simplest geometry and are not suitable for our purposes. We have developed

an approximation scheme to treat IFR transport in curved channels as essen-

tially a quasi-two-dimensional one. This is described in Section VI.

Some energy balance relationships for a beam in an IFR channel are

discussed in Appendix A. These have been used to obtain some of the

results in Section III and are included for completeness.
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II. CHANNEL FORMATION

In this section, we take a preliminary look at the feasibility of using

an electron beam to create an IFR channel. The main issue is whether suf-

ficient ionization can be produced over long enough distances and main-

tained for long enough times. The parameters determining this are the

ionization cross sections and pulse length, which affect the magnitude of

the ionization; the ionization cross sections, which through the mean free

path affect the distance over which the ionization can be formed; and

recombination and thermal effects, which impact the lifetime of the

channel. For typical parameters, we examine the trade-offs in gas type,

pressure, beam energy, current and pulse length for such an ionization

channel. This is done for a generic accelerator application and for a

proof of concept experiment.

The parameters considered are:

I (current) < I A

L (channel length) < 100 m

p (pressure) 1 - 5 microns

ni (ion density) 1012 cm 3

E (beam energy) 400 eV - 100 keV

The gases considered are helium, neon, argon and xenon. Molecular species

are not considered due to their shorter recombination times.

1. IONIZATION CROSS SECTIONS

In the energy range of 400 eV to 100 keV, ionization cross sections for

He, Ne, Ar and Xe vary from 3 x 1019 cm2 to 3.5 x 10- 6 cm2. (See Figure
1 and Table 1.1) Data for Xe up to 1 keV is from Rapp 2 with an extrapola-

tion performed to higher energies.
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TABLE 1. TOTAL CROSS SECTIONS OT FOR IONIZATION OF HELIUM, NEON,
AND ARGON ATOMS BY ELECTRON IMPACT

Energy Cross Sections
(keV) (cm2)

e + He e + Ne e + Ar

2.0 E-02 7.40 E-17
2.5 E-02 8.80 E-19 4.10 E-18 1.50 E-16
4.0 E-02 1.71 E-17 2.30 E-17 2.48 E-16
6.0 E-02 2.99 E-17 4.65 E-17 2.85 E-16
8.0 E-02 3.41 E-17 6.12 E-17 3.00 E-16
1.0 E-01 3.60 E-17 7.00 E-17 3.01 E-16
2.0 E-01 3.38 E-17 8.10 E-17 2.50 E-16
4.0 E-01 2.44 E-17 6.48 E-17 1.80 E-16
8.0 E-01 1.48 E-17 4.27 E-17 1.01 E-16
1.0 E 00 1.22 E-17 3.60 E-17 8.50 E-17
2.0 E 00 6.92 E-18 2.00 E-17 4.70 E-17
3.0 E 00 5.20 E-18 1.41 E-17 3.38 E-17
4.0 E 00 4.19 E-18 1.08 E-17 2.68 E-17
6.0 E 00 3.00 E-18 7.80 E-18 1.98 E-17
8.0 E 00 2.31 E-18 5.90 E-18 1.58 E-17

Theoretical

1.0 E 01 1.9 E-18 5.20 E-18 1.20 E-17
1.5 E 01 3.60 E-18 8.20 E-18
2.0 E 01 2.70 E-18
5.0 E 01 5.1 E 19
1.0 E 02 3.1 E-19
5.0 E 02 1.4 E-19
1.0 E 03 1.3 E-19
5.0 E 03 1.4 E-19
1.0 E 04 1.5 E-19
5.0 E 04 1.8 E-19
1.0 E 05 1.9 E-19
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2. MEAN FREE PATH

The mean free path is

X(cm) = 2.82 x 10- 15/p(microns)a(cm
2)

For p = I micron and a in the range mentioned above, X ranges from

9.4 x 104 cm to 80 cm. These values comfortably span those needed for

either an experiment or the application.

3. PULSE LENGTH

Ignoring recombination for the moment, the pulse length needed to give

an ion density of ni is

'(s) = ni (cm 3)e(coul)/n (cm'3 )(cm 2)j(A/cm2)

where e is the electron charge and j the current density. If we define the

ionization fraction fi = nilng, then

jt = fi e/a

or in terms of the mean free path,

jT = n i e

For p = 1 micron, ni = 1012 cm
- 3 , j = 1 A/cm 2 and a for He,

E(keV) -r (ms)

0.4 0.18

1.0 0.37

10.0 2.37

For p = 1 micron, and the rare gases listed earlier, the mean free

paths range from 80 cm to 9.4 x 10 cm. The corresponding pulse lengths

for j = 1 A/cm 2 range from 12.8 us to 15.0 ms. Again, the pulse lengths

needed are in an achievable range.
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4. RECOMBINATION

One recombination mechanism available is radiative recombination. A

rough estimate for this recombination time is 0.3 s (n i = 1012 Te = 300').

In practice this would be significantly reduced by impurities, the details

of which are hard to estimate. However, collisional-radiative recombina-

tion occurs on a shorter timescale and would dominate purely radiative

recombi nation.

The collisional-radiative recombination rate is strongly temperature

dependent3 (see Table 2), so an estimate of the electron temperature must

be made. If the temperature is low, the recombination rate may be too

rapid for the ion channel to persist. A crude estimate for the electron

temperature was made by calculating the equilibrium value of the energy

deposited to each gas atom and relating this to the temperature.

3/2 kT = dE/dx jT
nge

For 1 keV electrons in He,

AT = 2.17 x 10 7jT

i.e., for j = 1 A/cm 2 and T = 0.1 ms, AT - 22000. Referring to Table 2

shows that for ni = 1012, the recombination time is increased to an accept-

able value around 50 ms.

TABLE 2. COLLISIONAL-RADIATIVE RECOMBINATION TIMES (nec) - l IN SECONDS

ne T = 500'K 10000 K 20000 K 40000 K 8000 0 K
1010 6.25(-1) 5.26(0) 2.44(+1) 7.14(+1) 1.64(+2)
1011 1.00(-2) 1.45(-1) 1.10(0) 4.55(0) 1.23(+1)
1012 1 .11(-4) 2.56(-3) 3.45(-2) 2.27(-1) 8.33(-1)
1013 1.12(-6) 3.23(-5) 7.14(-4) 8.33(-3) 4.76(-2)

Numbers in parentheses give the power of 10 by which the entries must he
multiplied.
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5. THERMAL EFFECTS

Another possible mechanism to remove ions is thermal expansion. The

time required to do this was estimated by equating the mean kinetic energy

to the thermal energy.

3kT

or

(cm/s) = 1.5 x 104 [(Tg (*K)/A (amu)]
1/2

where A is the atomic mass. The times to travel 1 cm are given in the

following table:

t (us)

Atom v/T /2 T = 3000 10000 20000 40000

He 7.9.103 7.3 4.0 2.8 2.0
Ne 3.52x103 16.4 9.0 6.3 4.5
Ar 2.5x103 23.1 12.6 8.9 6.3

The above table can also be used to estimate ambipolar diffusion times.

The energy gained by a particle traversing the electric field is roughly

the temperature of the electrons whose displacement created the field. So,

by replacing the gas temperature above, by the electron temperatures, ambi-

polar diffusion times can be estimated. Thermal expansion and ambipolar

diffusion seem to be much more limiting than recombination in determining

the lifetime of the channel. However, a magnetic guide field can be used

to contain the ions. The gyroradius is:

r (cm) = 1.02 x 102 A1/2 (amu) Tg1/2(eV) B-1 (gauss)

So only a moderate field, B = 170 gauss, is needed to confine a 20000 He

ion to ri = 0.5 cm. A moderate guide field seems to easily overcome the

diffusion problems.

12



6. EXPERIMENTAL PARAMETERS

The following parameters are chosen to check the feasibility of a proof

of concept experiment.

j < 1 A/cm
2

L 50 cm

p 1-5 microns of He

n i  10 12 cm
-3

E 1 keV

For these parameters,

o 1.22 x 10- 1 7 cm2

= 462 cm - 23.1 m

jT = 7.4 x 10- 5 - 3.7 x 10- 4 A s cm 2

AT = 1600-80000 K

Trecomb = 35-830 ms

The 462 cm mean free path corresponds to a 10% loss in 50 cm.

7. APPLICATION PARAMETERS

For an envisioned accelerator application the following parameters are

chosen

j < 1 A/cm
2

L 50 m

p 1 micron He

ni  1012 cm
-3

E 10 keV

13
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For these parameters,

a = 1.9 x 1018 cm
2

S= 150 m

jT = 2 . 4 x 10- 3 A cm- 2 s

AT = 89000 K

Trecomb > 900 ms

The 150 m mean free path corresponds to a 30% loss in 50 m.

8. CONCLUSION

The most impactive parameter for the concept seems to be temperature.

If the electron temperature is too low, recombination will destroy the

channel. If the electron temperature is too high, ambipolar diffusion will

rapidly expand the channel. However, the application of a moderate guide

field is sufficient to overcome the ambipolar diffusion. With such a

field, the temperature can be allowed to get high enough that recombination

should be no problem. Of course, effects like recombination with electrons

streaming off metallic surfaces have been ignored in these first calcula-

tions. Additionally, if the conditions are more like a discharge and less

like a beam, the analysis changes. The above calculations indicate that

sufficient ionization can be created over long enough distances, and it

appears that it can be maintained over long enough times.

14



III. ACCELERATOR IFR BEAM TRANSPORT THEORY

Several important issues must be addressed to assure successful IFR

transport in recirculating accelerators: beam and channel equilibrium

properties, beam front erosion, beam emittance growth, beam-channel insta-

bilities, and injection and extraction. This section presents analytical

estimates for many of these issues and identifies those which require

further study.

Two generic recirculating accelerating designs can be envisioned, a

racetrack geometry in which the accelerated beam passes around a single

closed drift tube many times and a helix geometry in which the beam is
injected at one end and extracted at the otF -. The former entails complex

injection and extraction procedures, while L,,e latter is bulkier and, in

particular, requires a larger acceleration module bore size.

We assume a relativistic electron beam propagating in an IFR channel of

comparable radius approximately centered in a metallic drift tube. The

channel to beam line density ratio f is taken to be less than one unless

otherwise stated. For f much less than one, the equilibrium channel radius

in the presence of the beam is somewhat less than the beam radius, but this

should not affect significantly the conclusions of this report. The beam

and channel mean radius is designated a, the drift tube radius b, and the

drift tube characteristic bending radius R. Approximately gaussian beam

and channel radial profiles are assumed. The beam normalized current and

energy are v and y, respectively.

1. EQUILIBRIUM CONDITIONS

In these terms, the usual radial force balance equation for beam

electrons in the partially charged neutralizing ion channel is

15



0

[f c2P 1

The average transverse momentum pi can include both thermal and

rotational motion. It can be related to an effective normalized emittance,

Pja/c = En, which is approximately conserved during acceleration.

[ a a C2 E 2

fL 2 22n (2)
2 ya 2 - y 2 2 

Provided f p y -2 the beam always can find an equilibrium radius, although

it may exceed the drift tube radius, in which case current loss occurs.

For instance, low energy portions of the RADLAC beam, which has high

normalized emittance due to rotation, are lost rapidly in IFR transport

simul at ions. 4

Typically, as low an emittance as possible is desirable in an

a celerator. Taking as a lower bound the Lawson-Penner relation,
5 (nLP

Vv rad-cm, gives the simple radial equilibrium expression

2
fy[a(cm)] 1 (3)

for 1 > f 3 y-2. Equation 3 is readily satisfied for even modestly

relativistic injection energies. Thus, IFR transport eliminates the need

for magnetic focusing in the accelerator. Care should be taken to avoid

abrupt changes in the matching condition, which can cause emittance growth 0

and current loss. The beam and channel contract during acceleration in a

racetrack geometry. It may be possible in a helix geometry to vary f along

the beam path to control the beam radius.

The y appearing in these equations is, of course, based on beam energy

reduced by the space-charge depression, approximately

16



Ay = (I - f)v (1 + 2 tn b/a) (4)

for currents below the spacecharge limit,

(1 - f)vL = (y2/3 _ 1)3/2/(1 + 2 in b/a) (5)

Not surprisingly, these expressions differ from those for vacuum transport

only by a factor of f.

If the electron beam in the accelerator is pulsed, the ion column

expands electrostatically between pulses with a doubling time of order

1ami/2

cte ( - (6)

For typical parameters fv = 1/2, a = 1, and singly ionized Xenon, the

column radius doubles in about 20 ns (see Section V). Less time is

required for lighter ions. The channel contracts again with the arrival of

the the next pulse. The resulting oscillations of the ion channel increase

beam emittance and may trigger instabilities. Keeping the beam interpulse

spacing short is highly desirable. Alternatively, it may be possible to

neutralize the ion column with electrons injected from the drift tube wall,

perhaps by techniques similar to those used in PULSELAC.

2. CHANNEL TRACKING

The electron beam can track a curved ion channel, if its curvature

radius is not too small. Balancing electrostatic and centrifugal forces

indicates that the beam in a bend displaces by an amount 6 from the channel

axis,

6 -a y (7)a Rvf

The displacement must be somewhat less than the channel radius to prevent

significant loss of electrons lying near the edge of the beam emittance

17



envelope. Recent simulations 6 suggest 6/a < 0.2, limiting the electron

energy to 5 MeV or less for R/a = 100 and fv = 1/2. This energy limit is

less optimistic than our earlier estimate of 15 - 20 MeV for fv = 1, which

considered only detracking of the entire beam.7 The new result is con-

sistent with a recent experiment demonstrating 90% transport of a 1 MeV, 18

kA beam through a 900 turn with R/a - 90.8 It is evident, therefore, that

the IFR channel cannot replace bending magnets in a recirculating

accelerator. The channel does, however, provide about a 10 M1eV energy

bandwidth, reducing tolerance requirements on the magnetic field.

To the extent that the channel contributes to bending the electron

beam, it feels a force and drifts sideways. The time for the channel to

move a beam radius is

ctd -2fRa mi /2(8)

Yd me8

where Yd is the beam energy mismatch in the turn. For the parameters

used previously, a 2 MeV energy mismatch, and f = 1/2, the transverse drift

time is 70 ns. Thus, td is only about three times the minimum circu-

lation time in a racetrack geometry and may be less than the beam pulse-

length in a helix geometry.

Channel drift can be reduced by image forces in the drift tube walls,

if the drift tube radius is not too large. The net image force is approxi-

mately -2fvA/b 2. Hoop stresses are negligible. Balancing the image

forces against the centrifugal force and applied magnetic force gives

Sb Yd (9)
V- ;f

or A = 0.6 cm for b = 5 cm. Channel displacements of this magnitude in

turns are acceptable. At transitions between straight and curved drift

tube sections, the channel adjusts smoothly over distances of order one-

fourth a betatron wavelength. Note that magnetic image forces decay on 4

18



tens-of-microsecond timescales, depending on the composition and thickness

of the drift tube wall. Acceleration should be completed by that time.

3. BEAM FRONT EROSION

Inductive erosion of a low current beam in a straight drift tube is

determined easily. Electrons at the front of the beam lose energy at a

rate f/vl - (1 + 2 In(b/a)), where 1 is the length over which the beam

magnetic field rises to its full magnitude. Electrons in this length 1,

which is the greater of the current rise length and the beam radius, con-

tinue to drop in energy until they become nonrelativistic, fall behind, and

are expelled electrostatically. Hence, after initial transients, which may

be quite long for beams injected at high energies, the beam front erosion

rate settles to approximately

dx _fvTy (1 + 2 tn b/a) (10)

where z measures transport distance, and x the length of beam eroded. Most

of the lost energy is carried off by expelled channel electrons. The ero-

sion rate varies as 4.2/y for the parameters'ttroduced above, severely

limiting the minimum practical energy at which the beam can be injected

into the accelerator.

A similar calculation shows that the beam tail gains no energy induc-

tively, unless the pulse length is comparable to 1. Likewise, the fronts

of subsequent pulses lose no energy except to the extent that the channel

has captured electrons between pulses.

The validity of this simple analylis becomes questionable as

approaches unity, because channel electrons attain mildly relativistic

energies while being expelled. As a consequence, a portion of the channel

electrons are trapped at a few times the beam radius by the beam magnetic

field and swept forward with the beam front. This behavior is seen clearly

in the simulations described in Section IV, and the corresponding
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experiments exhibited current enhancement at the front of the pilse.8 It

is difficult to obtain scalable erosion rates from either the experiments

or the simulations, because the injected beam was itself only marginally

relativistic and because transport distances were short. Interestingly,

recent IFR simulations of higher energy 10 kA beams, performed for other

reasons, showed less channel electron trapping than expected.6 The discre-

pancy is being investigated. In any event, one might expect the erosion

rate to be unchanged to lowest order from trapped channel electrons, since

fv remains the same despite the increase in current locally.

Low energy electrons can be accumulated at the beam head by a second

mechanism. Often the acceleration modules are energized slightly before

the arrival of the beam, thereby accelerating channel electrons.

Travelling more slowly than the main beam, the accelerated channel elec-

trons tend to fall back into the beam head. The significant electron

energy spread at the front of the 40 MeV beam emerging from the ATA linear

induction accelerator, which uses IFR transport, is attributed to this

mechanism.9 At currents of order 10 kA, magnetic trapping may also have

played a role.

Beam bending changes the entire picture. Most channel electrons moving

with the beam, including those picked up in straight sections of the

accelerator, are lost in the curved sections, unless their energy matches

that of Lhe main beam to within the energy bandwidth of the bend. Recall

that the bandwidth for loss of the hotter electrons in the beam is at most

10 MeV, and that the comoving channel electrons tend to have high trans-

verse energies.

More seriously, the limited energy bandwidth of the bends may deplete

the inductively decelerated beam electrons in the beam front, enhancing

inductive erosion. One might imagine as a worst case that y should be

replaced by Yd in Equation 10, leading to a large erosion rate. More

realistically, only a portion of the reduced energy beam particles are lost

in the turns, only modestly increasing inductive erosion. The uncertain-

ties here are great.
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For completeness, we also mention what might be called centrifugal

erosion, although its effect is small. Electrons at the very front of the

beam in a turn benefit not at all from the IFR-generated energy bandwidth,

because channel electrons are not yet expelled from the channel. The

resulting erosion is analogous to that suffered by a beam following a

straight IFR channel across a transverse magnetic field.10  Replacing the

magnetic force by the centrifugal force in the semi-analytically obtained

magnetic erosion formula 11 yields

* 1.15
dx a Y .5f 1/2

The centrifugal erosion rate is of order 0.02 for the parameters considered

here.

4. BEAM EMITTANCE GROWTH

At each transition between straight and curved sections of the IFR

channel in racetrack geometry, the beam equilibrium position abruptly

shifts sideways by 6. The beam itself attempts to follow its equilibrium

position, overshoots, and oscillates about that position. After a distance

of a few wavelengths, the oscillations damp by phase-mixing, leaving the

beam with an increased emittance. Since the initial oscillation amplitude

is 6, the new emittance may be expected to be

C C a~ (12)Cn n (1 + 6 12

Rigorous calculations by W. Rienstra give essentially the same result for

small 6/a. 12 After twenty cycles with four transitions per cycle, beam

normalized emittance grows by three orders of magnitude for 6/a = 0.1.

This is clearly unacceptable.

That the beam relaxes in a few betatron wavelengths suggests two

methods of reducing emittance growth, by varying the drift tube curvature

radius over distances long compared to the betatron wavelength or by having
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straight sections of the drift tube short compared to the betatron wave-

length. The beam betatron wavelength in the IFR channel is

11/2
As - 2ia (13)

or about 6y1 / 2 cm for the parameters used here. Hence, x ranges between

20 cm and 85 cm for energies between 5 MeV and 100 MeV. A roughly ellip-

soidal racetrack geometry with straight sections about 20 cm long to accom-

modate an acceleration module and transition sections about 50 cm long

where R decreases to 100 cm from - in the straight section would have

either long transition regions or short straight regions compared to the

betatron wavelength for the entire 5 - 100 MeV energy range. If longer

straight sections are required, to permit many acceleration modules or for

other reasons, then 100 cm transition sections probably would be adequate

to minimize emittance growth.

Of course, matching the bending magnetic fields precisely to the beam

energy, so that fd = 0, also eliminates this source of emittance growth.

In a similar fashion, acceleration modules in curved drift tube

sections cause emittance growth, unless the applied transverse magnetic

field is appropriately varied across the acceleration gap to balance the

increased centrifugal force. Provided the beam never is accelerated out of

the energy bandwidth of the turn, the worst case emittance growth due to

energy mismatch across an acceleration gap is

n + a m (14)

For a final energy Ym = 200, Equation 14 predicts a maximum emittance

increase of no more than a factor of five. Even crudely matching the

transverse magnetic field to the change in beam energy across the acceler-

ation gap should reduce the emittance growth to a factor of two, which is

acceptable.
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Emittance increases caused by abrupt lateral displacements of the beam

centroid equilibrium position have been considered thus far. Abrupt

changes in the beam equilibrium radius have a similar effect. Using Eq.

(2) and noting that f is replaced by f • (a/a0 )2 when the beam contracts

but the channel does not, we find that the equilibrium radius varies as the

fourth root of the beam energy. Arguments resembling those used above then

give a cumulative beam emittance growth from gap induced radial oscil-

lations of

Cn = n (m/yo ) 1/4 (15)

or a factor of 2.1 for a 5 MeV injection energy. Thin solenoidal lenses

placed near the acceleration modules to match the beam initial and final

radii might reduce this growth somewhat.

Implicit in the emittance growth estimates presented here is the

assumption that the average beam radius does not change greatly during the

course of acceleration. Because the beam radius scales as £n/y
1 2

according to Eq. (2), a twenty-fold increase in beam energy is balanced by

4.5-fold increase in emittance. Such an increase is not unreasonable in

light of the previous estimates.

Severe emittance growth is known to occur in low current recirculating

accelerators due to particle resonance effects, when the beam betatron

frequency is a small integer multiple of the circulation frequency. 13

Similar behavior is unlikely in high current, IFR focused, inductive gap

accelerators for several reasons. IFR focusing is nonlinear for large

amplitude oscillations, saturating the resonant interaction. The number of

betatron wavelengths around the racetrack typically is large, which narrows

the resonance bandwidth. The rapid acceleration produced by inductively

driven gaps causes the beam to pass through resonances quickly, or miss

them entirely.

Emittance growth also is caused by instabilities, the topic of the next

subsection.
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5. COLLECTIVE INSTABILITIES

The accelerated electron beam may be unstable through interaction with

the channel or with the accelerator. The former category consists of hose-

like electron and ion two-stream instabilities, while the latter includes

principally the negative mass and beam breakup instabilities.

For f > 1, only a portion of the channel electrons are expelled by the

beam, and the beam is only loosely bound to the channel. Simulations (per-

formed for another project) always exhibit strong instabilities between the

beam and remaining channel electrons within a propagation distance of

several betatron wavelengths.14 Both hose and sausage motions are evident,

with hose usually dominating. Significant emittance growth and at least

some current loss results. Analytic studies have not suggested any method

of avoiding this instability except the obvious course of requiring f < 1,

which we recommend.

The ion two-stream instability, sometimes called the ion resonance

instability,15 occurs for f < 1. For -- t 1, its temporal growth rate atmi

a fixed point in the accelerator is smaller than, the ion plasma frequency

based on the beam density,
16

m11

( ey

resulting in an e-folding time of about 20 ns. Consequently, the insta-

bility can be avoided in a helix geometry simply by limiting the beam pulse

length to 100 ns or so. This option in not available in a racetrack

geometry, and acceleration times of 100 ns or less are unrealistic. There-

fore, one must rely on effects not yet fully taken into account, such as

nonlinearities, 17 multiple ion species, or charge exchange,18 to reduce

instability growth significantly. We remark in this respect that the

instability has been observed experimentally for IFR channels in only a few

instances. ' It is conspicuous by its apparent absence in ATA experiment. :
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The negative mass instability afflicts beams on curved trajectories. 20

Its e-folding time is relatively long, several hundred nanoseconds for

parameters of interest. So, it should be of no concern for the rapidly

accelerated beam of a recirculating inductive gap accelerator. Focusing

provided by the IFR channel also should be stabilizing. The resistive wall

instability is slower still, and should be completely negligible.

IFR transport is know both theoretically 21 and from experiments on the

ETA and ATA accelerators22 to suppress cavity-coupled instabilities, such

as the bpam breakup and image displacement modes in linear induction

accelerators. Without ion focusing, beam breakup growth due to low Q gaps

typically is slow compared to negative mass growth.
23

6. INJECTION AND EXTRACTION

Electron beam injection and extraction obviously are no problem in

helix geometry. Unfortunately, the same is not true in racetrack geometry.

Substantial thought has gone into this problem for high current

betatrons, and the proposed schemes2 ,25 may be practical as well for

recirculating accelerators with IFR channels. Here, we consider some

options unique to IFR transport.

Sloan has shown analytically that an electron beam injected at a small

angle to an IFR channel is captured if the injection angle is less than

2(fv/y)l/2.26 This angle is 360 for a 5 MeV injection energy. However, by

analogy with channel tracking around a curve, we expect that a much smaller

angle should be used to avoid loss of beam current. Only a 50 cm straight

drift tube section would be needed to capture the beam injected at 60 with

b - 5 cm. Conceivably, the magnetic fringing field at the transition to a

curved section could be employed to shorten this distance modestly. Emit-

tance growth in the injection process can be as low as the ratio of the

injection angle to the maximum injection angle, or just under 20%.
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An IFR-based extraction scheme is less obvious. A weak, localized,

transverse magnetic field not quite sufficient to deflect the beam from the

channel could be applied in a straight section of the accelerator. Then, a

laser beam fired into the transverse field region at a glancing angle to

the original channel would create a new channel which the beam might follow

out of the accelerator. The loss of beam quality which might result is

unknown.

B. Hui and Y. Lau have proposed analogous schemes for injection and

extraction in a modified betatron.
27

7. SUMMARY AND RECOMMENDATIONS

The preceding discussions suggest that inductive erosion in curved

channels, emittance growth at transitions between straight and curved drift

tube sections, ion two-stream instabilities, and beam extraction (in race-

track geometry) are the most serious uncertainties confronting IFR trans-

port for recirculating accelerators. Our understanding of streaming

instabilities under realistic conditions can be improved with more detailed

linear analyses. Single particle calculations can provide a useful basis

for emittance growth assessments. Extraction simply needs new ideas.

Beyond this, multi-dimensional computer simulations and parallel experi-

ments are required. Beam extraction and ion instability growth and satu-

ration can profitably be addressed with the simulation techniques employed

in obtaining the preliminary transport results presented in the next

section. The nearly completed code modifications outlined in Section V are

necessary to treat erosion and emittance growth in curved channels

properly.
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IV. MIMI SIMULATIONS

In this section we give a brief description of several computer

simulations which were done to address the issue of the inductive erosion

of low v/y beams in IFR channels. The parameters used in the simulations

were typical of those in experiments performed at the MIMI facility at

Sandia National Laboratory.

A relativistic electron beam of energy, y = 4.0 and current, Ib = 10

kA was injected into an IFR channel of line density ratio, f = 1. The beam

and channel were assumed to be of equal radii, a = 7 mm. The channel was

centered in a conducting drift pipe. Two different pipe radii were used in

the simulations, 20 cm and 5 cm.

The simulation of the transport in a 20 cm drift pipe showed an erosion

rate of approximately 60%-70%. The erosion ,dte ii the smaller pipe was

reduced from that in the larger pi;-e by about 25% to a rate of approxi-

mately 35%-45%. Because the beam energy is so low, the inductive y

depression is large enough to diminish the ve2o0ity of the beam head

substantially making it difficult to precisely define the pinch point.

This is the reason for the uncertainty in the erosion rate values.

Particle plots for the two cases are shown in Figure 2.

The erosion rates observed in the simulations are smaller by about a

factor of two from those calculated from Equation 10, Section III. This

discrepancy is likely due to the trapping of the channel electrons by the

self magnetic field of the beam. It is observed in the simulation that the

channel electrons are driven forward (along the beam) due to the E x B

drift in the radial electric field and azimuthal magnetic field of the

beam. This is consistent with estimates of the gyroradius of a channel

electron in the field of the beam. The estimates show the gyroradius to be

smaller than or of the order of the channel radius. The snapshots of

Figure 2 do not illustrate this effect well, but it is very clear in
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motion pictures of the simulation. Furthermore, the net current plots show

a considerable current enhancement due to the co-moving channel electrons.

This clearly illustrated in Figure 3. The current enhancement is con-

sistent with the experimental observation.10
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V SELF EXPANSION OF AN ION CHENNEL

In the IFR transport of an electron beam, the plasma electrons created

during the ionization of the channel will be expelled by the stiffer

electron beam. If the channel is to be used to guide several beam pulses,

the bare ion channel cannot be allowed too much expansion in its self field

or it will no adequately beind the beam. An estimate of the expansion of a

bare ion channel can be easily made.

If the channel is taken to be axisymmetric and finite in radius, the

peak radial self electric field occurs at the channel edge. If, in

addition, the channel ions are assumed to be cold, no ion can cross the

channel edge. A simple edge envelope equation can then be simply derived

using only charge conservation and Gauss' law.

If a = a(t) denotes the instantaneous position of the channel edge, the
radial electric field at the edge is

20' aQ aq 0
E a-) , = 2q fO n(r)rdr (17)

where aois the initial radius of the channel, q the ion charge, and n(r)

the initial channel density profile. Q' is simply the charge per unit

length of channel. Under the assumptions made, the motion of the channel

edge is independent of the density profile. The equation of motion is

Mi= qEr  2 0 (18)

This equation is nonlinear but can be reduced to quadrature. Normalizing

the envelope radius to its initial value, a0, and time to the "time

constant" ao/0N2K, K = 2qQ'/M , the solution can be found in terms of the

well known plasma dispersion function, Z:
30

= -a Re[Z(&tlna)] (19)
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where

T = aot/2-K

and

a = a/a 0

This equation gives the time it takes the channel to expand by a factor a

over its initial radius. Physically this result is reasonable. For a very

large, such that Lna > 1, the asymptotic behavior of i is

T - 2a/(tna)1/2  (20)

The expansion rate is slower than that for expansion under the action of a

uniform field, T - Va but faster than free expansion, T - a, although just

barely in the latter case. For typical cases of interest, the numerical

value of ReZ is near unity.

Numerically these times are short for parameters of interest. For

example, for an initial radius of 1 cm, n 1012 of Xe , the doubling timee
of the channel radius is 19 ns. The scaling is, for singly ionized

molecules,

. a0A1/2 A  1/2

tD(a = 2) = 1.53 afA 2( f-.) ns (21)

where A is the atomic number, IA = 17 kA, Ib9 the beam current, and f the

channel to beam line density ratio. The time for the channel radius to

increase an order of magnitude is

/ \ 1/2t 6.05 aoA( /2( ) ns (22)
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The corresponding velocities can also be obtained. The velocity scales as

1/2 - 1/2a = (2K) (ina) (23a)

or

a A= 1.4X10 (b) cm/s (23b)

At the doubling radius, for ni = 1012 (b = 15 kA). X+  the velocity is

a(a = 2) = 9.6 X 10 cm/s

It is clear the channel expansion can be quite rapid even for massive

ions. This could be prevented by refilling the channel with electrons.

These could, in the context of a recirculating accelerator, be waste beam.

They might also be supplied from the drift pipe wall. In this case the

beam would have to clear the channel with each pass and the consequent

erosion may be prohibitive. Should this be an option, we have considered

the possibility of using a felt cloth liner on the drift pipe as an

electron source. Adler and co-workers have shown this material to be an

effective source of electrons when used as a field emission cathode.29 In

this application, the turn on time of the cloth fiber is comparable to the

risetime of the voltage pulse. In order to be effective, the cloth must

emit a sufficient number of electrons before the channel moves

appreciably. Current densities of the order of 270 A/cm 2 have been

observed in Reference 29. The ion column considered earlier has a line

charge Q' = 1.5 x 103 esu/cm. A liner on a 4 cm radius drift pipe could

be expected to emit 3400 A/cm of drift pipe. The liner therefore must emit

for

_ 1.5 x 103 esu/cm - 1
e 3400 A/cm

This is short enough to provide channel neutralization with negligible ion

motion.

33



VI. BEAM TRANSPORT IN CURVED SECTIONS: A COMPUTATIONAL APPROACH

1. THEORY

Theoretical investigation of beam behavior in recirculating acceler-

ators imposes the obvious requirement that some method be adopted for

treating the physics in a curved geometry. This is true if analytic

solutions to a particular question are sought or if the problem at hand is

to be attacked by computer simulation. In this section, a method for

solving this problem will be described. It has been used to investigate

some linear stability issues in betatrons and has also been implemented in

the MRC PIC simulation code IVORY. The latter application will be

described in the following part. Before proceeding to discuss the

formalism, it is useful to briefly indicate the technical issue which

underlies the problem.

Simply stated, the problem is that of finding an appropriate choice of

coordinate system in which to describe the physics of the problem. The

physics is little more than Newton's equations of motion and Maxwell's

equations along with the appropriate boundary conditions. The choice is

complicated by the difficulty that in typical systems of interest the

simplest coordinate system for the description of the dynamic equations is

not the best system for the applications of boundary conditions. Thus, for

example, the standard cylindrical system (R, *, Z) of Figure 4 (a) is not
well suited to treat transport in curved tubes of circular cross section.

The boundary conditions are difficult to describe analytically, leading to

infinite series which are slow to converge and thus cumbersome to implement

numerically. In the context of a PIC simulation, the best one can hope to

do is a piecewise linear fit to the R-Z boundary surface. This can be

complicated to implement if the fit must be done accurately. This could be

expected to be important in problems where image forces play a role in the

physics. Despite these shortcomings, the resulting field equations have

well known properties. Furthermore, the symmetry direction, 6 in Figure 4,

can be treated computationally as well as analytically, by Fourier
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decomposition and the Fourier mode numbers are good "quantum" numbers.

This simplifies three-dimensional simulations, but precludes, a priori the

treatment of more complicated geometries such as a racetrack, a configura-

tion of some interest.

An alternative coordinate system might be the (r, 8, 0) in Figure 4(b)

which we call quasi-toroidal coordinates. In this system, the boundary

conditions in a curved tube of circular cross section, the example above,

are particularly simple since the boundary surface coincides with a

coordinate surface. (Other boundary surfaces, for example elliptic cross

sections, could be treated similarly.) The simplicity of the boundary

conditions is accompanied, however, by a complication in the equations

describing the physics and desirable properties30 of some of the operators

are lost. Furthermore, Fourier decomposition in the angular coordinate,

e, is no longer straightforward in that the modes are no longer good
"quantum" numbers. The toroidal curvature couples modes. Fourier

decomposition in the 0 direction remains the same although it is no longer

essential or particularly advantageous. We will return to this point.

Given these added complications, it is not immediately obvious there is any

advantage in employing quasi-toroidal coordinates over cylindrical

coordinates, for example. The element that resolves this dilemma is the

relative size of the radius of the cross section (minor radius) of the

system to the turning radius (major radius). This ratio, the inverse

aspect ratio, is typically small and provides an expansion parameter in the

quasi-toroidal coordinate system. In this way, the properties of a simple

coordinate system can be recovered. Furthermore, the mode coupling in a

Fourier decomposition in the poloidal angle, 6, can be related to the order

of the expansion in the inverse aspect ratio. This allows the mode

coupling to be calculated explicitly. In implementing this procedure in

PIC simulation codes, the toroidal angle, *, can be treated as a mesh

coordinate, along with p. By doing this, racetrack-like geometries can be

treated in contrast to the case employing a cylindrical coordinate system.

This is the point of employing Fourier transformed representation in the

poloidal angle with the mode coupling given explicitly. Thus, in the small
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inverse aspect ratio approximation, the use of a quasi-toroidal coordinate

system manifests clear advantages. We will now describe the formalism

generated by this approach.

The basic entities which are required to describe the dynamical

equations in any coordinate system are the various vector differential

operators which operate on the field quantities which appear in the

equations of motion, Maxwell's equations being the equations of motion of

the electromagnetic field. The quasi-toroidal coordinate system is orthog-

onal, and the calculation of these operators proceeds in the standard

way. 31 The expressions for the operators will not be given here but, the

basic quantities needed to generate them, the metric coefficients, are

h = a (24a)P

he = ap (24b)

h = a(l ap/R 0 cose) (24c)

where normplized coordinates have been introduced by the definitions

p = r/a , E = Ro0 /a

and a measures the minor radius of the system and R0 is the major radius

of curvature as shown in Figure 4. This normalized coordinate system is

particularly convenient in that it displays the small parameter, the

inverse aspect ratio e = a/Ro, explicitly. The difficulty discussed

earlier in implementing this coordinate system in general manifests itself

in the dependence of the metric coefficient ht, Eq. 24c, on the poloidal

angle 0. This implies a lack of separability 30 and not only complicates

general analytic approaches, but also precludes direct numerical

simulation. Thus, to proceed, the small inverse aspect ratio
4 4

expansion is adopted. If A represents an arbitrary vector (it could be E
or B, for example), we put
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+ (0) +(1)
A = A + CA + ... (25)

The vector operators, because they depend on the metric coefficients, also

have an inverse aspect ratio expansion, for example the curl is,

symbolically,

VX = (vX) (0 ) + ( VX) (I) + ... (26a)

and similarly the divergence

V. (V.)(0 ) + C(V-) 1  + ... (26b)

In these expressions and all to follow, the superscript in parentheses will

denote the order of the expansion. The expansion generates a set of

dynamical equations for the field quantities A(m), order by order in c

The resulting equations can either be solved analytically by, for example,

making a linearization and examining stability or implemented in a finite-

difference scheme in a simulation code. The formalism is systematic in

that, in principle, a calculation can be carried to arbitrary order in c.

In practice, going beyond second order is not likely to be feasible.

Before writing the field equations, one final technical point will be

mentioned.

In any curvilinear coordinate system, the divergence of the curl of an

arbitrary vector field vanishes identically. As described above, our

expansion procedure means that the exact operators are replaced by approxi-

mate operators. The question arises whether this condition persists when

the operators and the arbitrary vector are expanded in c. This has

important physical consequences. Should this fail, charge conservation

would no longer hold in each order and this would effectively lead to

fictitious charges appearing in numerical simulations. We have resolved
+(n)this issue by proving (V • vxA) , the nth approximation to V • VxA

vanishes identically for each n. The proof is by induction but will not be

given here. The conclusion is the inverse aspect ratio expansion does not

destroy charge conservation independent of the order at which the approxi-

mation is truncated. We now proceed to write down the Maxwell equations to

first order in c and discuss their implementation.
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The representation of the electromagnetic fields is as in the cylindri-

cal case, a superposition of Fourier modes in the poloidal angle e. As

discussed earlier, the toroidicity now couples modes. The coupling, to

first order in c, is fairly simple. It introduces sidebands m t I on a

fundamental mode of frequency m. The amplitude of the sidebands are 0(E)

relative to the fundamental. The mode coupling becomes more complicated in

higher order but can be calculated if necessary. For most problems of

physical interest only the first order terms are required. For example, if

the inverse aspect ratio, e = 30%, a fairly large value, the second order

terms make only a contribution of approximately 5%. We have only

considered the first order terms in the code development effort. In this

case, the Maxwell equations for the mth Fourier mode and its sidebands

become, introducing the notation

Q (O) = c(0) Cos me + 0( ) sin me

Q (1) = Qvc_ cos (m ± 1)e + Q(1) sin (m ± l)e

for the vth component of the quantity Q in the n = 0, 1 order of approxi-

mation:

Faraday's Law

n =0,

ap c mE(O )  ec (27a)ap tEs aE

p - () aE s)
ap-----mE) e- (27b)

a aE(°) a(
-P cc (27c)

aat a ap
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a es = S s (27d)
at ac ap

aB gc =a E() mE5O (27e)
at = - (pEO c - s

ap C = (PE( 5 ) + pc(O (27f)

n =1

P E~) 2 aE~0 ) pE~0 )ap -= (m :; 1) EM (1 c Tec + L- oc & (28a)
- W f atT -s ac 2 ag 2(2a

__ _____ () - a 22 aE~1  pE~ap =p(m T1 ) EMe sT+p2 es ___(28b

C at m+ %C; a 2 (28b)

a ec;T PC:; EC &C p PC (28c)
C at - ap 2 a

a es; _ ps:; &ST. s p Ps(2d
C at a ap -a(8d

ap &CT a -E (m T 1) E s;(28e)

aB~ 1)ap ST a (pE (1 t (m ;1) E~l) (28f)
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Ampere's Law

ap PC -4irfap 1(O) + B )(2a
Pc at c PC &S9a

ap PS -4wap j(Q) + m()(29b)
C at C Ps E

a ae c = 4J(0) + PC EB C (29c)
Cat ec aE ap

a(0) a(0) a(0)
a __s_ = -47rJ(O) + PS Es (29d)
C at es aE ap

pa &C =-4irJ()+ L B(Q) B (9e

Cat c +.-( Bec' - 0)(2

aE 4J(0) ~/ (f\ (0)a t Es = 4r + B(c) - B (29f)

and n =1,

ap pcT = -4p il +(m ; 1) B - ec;+~ P (O

c at C PCT-c: &

+ P oc(30a)
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(1) PaB(
a ps _ -4?rpa - (m ) s 2 B(O)
c at C ps+ 3E 2 c

2 aBes (30b)

2rag

BEM DB aB() B(O) aB(O)
a: c= _ .43J(1) + pC &C & gc p C (30c)C at ec ; 3@p -5 4@;(3c

( a 1) aBMl B(O) a8(0)Bas a:s + S s p ps7E @ E(1) -4wJ ( 1 )  -T+ 5 (30d)

c E1S; = a ap

t Ec; - C; ap ec; - (m 1) ps; (30e)

a at - 4.j(1) + (1) + (m ; 1) BMI)  (30f)

a at Es; ap es*BC::

2. COMPUTATIONAL SCHEME

The equations described in the previous subsection are solved as an
4

initial value problem. The conditiot, V • B = 0 is an initial condition.

Provided div (curl) = 0 , as discussed earlier, it is satisfied for all

time. Gauss' law is satisfied by insuring charge conservation. It is not

solved explicitly. This is the approach used in all of the MRC PIC simu-

lation codes to date.
32
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3. CODE DEVELOPMENT

Application of this method was carried out by modifying the existing 3-D

particle-in-cell code IVORY (originally developed by MRC for LANL). IVORY

is an electromagnetic relativistic code that solves an initial value problem

by pushing particles in the 3-D spatial and velocity phase-space, then

projecting particle currents on a 2-D spatial grid with the third dimension

resolved into Fourier normal modes. These currents are used subsequently as

inputs to the time-dependent Maxwell's equations, advancing self-consistent

field quantities for use in the next particle push. Each Fourier component

(sine or cosine) is advanced independently (over the same time step).

Because IVORY already has the capability to treat Fourier components in one

of the three spatial dimensions, it is straightforward, in principle, to

modify the field solver to generate the side-band contributions (using the

analytic, first-order curl approximations just describeddescribed) in the

curved region and calculate the corresponding forces on the particles.

An additional complication arises from the dependence of the metric on

the poloidal angle, 8. The current density "J" is calculated from the

particle current by dividing by an appropriate metric quantity which

includes a first-order "ecos a" term (from Eq. 24c). This introduces

contributions from J of order m to J of order m + 1 cosine mode (assuming

c 4 1). For the present case, a term of order J(O;c must be subtracted

from the J1) cosine term locally on the grid. Because a similar metric

division occurs in calculating the charge density "p", the continuity

equation ap/at + V • J = 0 is still conserved to limits set only by the

differencing scheme used.

IVORY has been modified to include the first-order sideband contribution

arising from toroidal curvature for the m = 0 poloidal mode in the field

solver and to push particles in a toroidal coordinate system. Extensive

testing of toroidal particle transport has been performed using several test

cases at low current to verify the particle-pushing algorithm and to check
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the accuracy of the externally imposed betatron magnetic fields and has S

yielded satisfactory results. The field solving section is now undergoing

testing at high currents.

This is adequate to treat most problems of physical interest. The

equilibrium offset of a beam from the minor axis due to the toroidicity

corresponds to an O(c) excitation of the m = 1 mode in the equilibrium.

This is accounted for automatically in the solution of the initial value

problem. If the beam is injected with a large offset, corresponding to a

large amplitude m = 1 fundamental with sidebands at m = 0 and m = 2, our

numerical implementation is inadequate. This is due to the aliasing of the

toroidicity sidebands with the nonlinear mode coupling excitations at m = 0

and m = 2. This case could be handled by treating the first order in c

particle push explicitly. The cost is additional complexity of manipu-

lating field quantities. Programming tricks to keep the storage require-

ments within limits would very likely be necessary.

It also is possible to add an "ionization package" to allow the

initialization and subsequent maintenance of a hieavy ion channel to guide

the beam and partially neutr lize its space charge (which unneutralized is

responsible for significant emittance growth). Such a package has already

been developed for IVORY to study beam transport in the LEBT region of

White Horse for LANL AT division. Parametric studies should yield useful

information in support of betatron injection experiments, indicating

parameter regimes that minimize emittance growth and beam drift during this

critical phase.

4. SUMMARY

A method for performing PIC simulations of charged particle beams in

recirculating geometries has been described. Because these simulations are

fully three-dimensional, there is no ignorable coordinate and methods which

rely on Fourier decomposition must be modified to handle these problems.

An approximation scheme for doing this forms the basis of our approach.
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The expansion parameter introduced is sufficiently small in typical systems
of interest to permit truncation of the approximations in low order and

this makes the method practical.
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APPENDIX A

IFR BEAM EROSION AND ENERGY FLOW

We have compiled and generalized the formulas for energy partitioning

during electron beam IFR transport in metallic drift tubes. The expres-

sions are valid for relativistic, paraxial beams with pulse lengths much

longer than the drift tube diameter. In addition, electrons expelled from

the channel are assumed to strike the drift tube promptly. This last

requirement may well be violated for v > 1/2. Ion motion is not con-

sidered.

Energy distribution among various particle species and fields can be

defined in terms of three integrals:

u b=1 f E2dA (1)
(1

U i f EbE dA (2)

U = f f Ei dA (3)

Eb and Ei are the radial electric fields due to the beam electrons and

channel ions, respectively. Bb = Eb and Bi = 0, where Bb and Bi are the

corresponding azimuthal magnetic fields. The beam velocity, approximately

equal to the speed of light, is normalized to unity.

The beam head loses energy inductively at a rate 2Ubi, causing beam

front erosion at a rate

dx I 2Ubi (4)
TFI vy

Most of the energy, an amount 2Ubi - Uii, is carried off by channel elec-

trons flying radially to the wall. The remainder, U ii, contributes to the

field energy behind the beam head, 2(Ubb - Ubi) + Uii.
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Since the Poynting flux associated with the fields behind the beam

front is 2(Ubb - Ubi), steady-state energy conservation indicates that the

the energy (per unit length) in the body is reduced below the injection

energy by the same amount. This energy loss is simply the spacecharge

depression of the beam in the ion channel. On this basis, the spacecharge

limit is given approximately by

2(Ubb - Ubi) = / 3/2 (5)

Just after the beam tail passes, the bare ion channel has an associated

field energy Uii but zero particle energy and Poynting flux. By energy

balance or direct calculation, the beam tail neither gains nor loses energy

inductively. Likewise, a second beam pulse following closely behind the

first suffers no inductive erosion. To the extent that enough time elapses

between pulses that field energy is converted to ion energy, some erosion

may occur in the second pulse, however. Figure 5 summarizes the energy

distribution among particles and fields.

The integrals (1) - (3) have been evaluated in two cases. For beam and

channel of equal radius a enclosed in a drift tube of radius R,

Ub 2 1
U V + xn(R/a) (6)

Ubi = fU bb and U = f 2 Ubb; f is the channel-to-beam line density ratio.

Inserting these results into Equation 4 gives the expected linear depend-

ence of erosion on f.
3 3

Suppose, instead, that the beam and IFR channel are surrounded by a low

density background plasma within the drift tube.34  Electrostatic fields

near the beam head expel the plasma electrons within a radius b,

Np b2 = Nba2(l - f) (7)

where Np and Nb are the beam and plasma electron densities. The time

required for expulsion is of order b/(2v) 1 /2. We assume b < R. In this

case,
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Ubi 2( 2 4 f + f zn b/a + xn R/b (8

S2(1 + 2f - + jn b/a + £fn R/b ()

Erosion persists even in the limit of vanishing f. Note that this analysis

does not allow for plasma return current flow at large radii.

Incidentally, when magnetic erosion 3 3 ,35 (or any erosion scaling as
-1/2 occurs simultaneously with inductive erosion, it is easy to show

that the combined erosion rate is approximately

dx Idx 1 + 1 dxI u2 i0)
dz dz! 1  T dz J dz u 1/ (10)
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